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In this paper, we consider multivariate inhomogeneous refinement equations of
the form .(x)=�: # Z s a(:) .(2x&:)+ g(x), x # Rs, where .=(.1 , ..., .r)

T is the
unknown, g=(g1 , ..., gr)

T is a given vector of functions on Rs, and a is a finitely
supported refinement mask such that each a(:) is an r_r (complex) matrix. Let .0

be an initial vector of functions in the Sobolev space W k
2(Rs). The corresponding

cascade algorithm is given by .n ( x ) = �: # Z s a ( : ) .n&1 ( 2x & : ) + g(x), x # Rs,
n=1, 2, ... . A characterization is given for the strong convergence of the cascade
algorithm in the Sobolev space W k

2(Rs) (k # N) in terms of the refinement mask a,
the inhomogeneous term g, and the initial vector of functions .0 . � 2000 Academic Press
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1. INTRODUCTION

An inhomogeneous refinement equation is a functional equation of the
form

.(x)= :
: # Z s

a(:) .(2x&:)+ g(x), x # Rs, (1.1)

where .=(.1 , ..., .r)
T is the unknown, g=(g1 , ..., gr)

T is a given vector of
functions on Rs, and a is a finitely supported refinement mask such that
each a(:) is an r_r (complex) matrix. Refinement equations play an
important role in computer graphics and wavelet analysis. When g=0,
(1.1) becomes the well-known homogeneous refinement equation

.(x)= :
: # Z s

a(:) .(2x&:), x # Rs. (1.2)
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The inhomogeneous refinement equation was used by Strang and Nguyen
in [13, p. 294] to investigate boundary scaling functions and wavelets on
intervals. Strang and Zhou [14] gave a systematic study of distributional
solutions in the univariate case. Distributional solutions of the inhomogeneous
refinement equation (1.1) were studied in [3, 9].

To solve the inhomogeneous refinement equation (1.1), we often use the
cascade algorithm. If we require a solution . of compactly supported func-
tions in the Sobolev space W k

2(Rs), the inhomogeneous term g must be in
Wk

2(Rs). Starting with an initial vector .0 of compactly supported functions
in W k

2(Rs), the cascade algorithm is defined by

.n(x)= :
: # Z s

a(:) .n&1(2x&:)+ g(x), x # Rs, n # N. (1.3)

We say that the cascade algorithm associated with a, g, and .0 is convergent
in the Sobolev space Wk

2(Rs) if there exists an r_1 vector . of functions
in W k

2(Rs) such that

lim
n � �

&.n&.&W 2
k (R s)=0.

The convergence of the cascade algorithms is fundamental to wavelet theory
and subdivision. Convergence of cascade algorithms has been studied in
connection with solutions of refinement equations and the description of
curves and surfaces in computer aided geometric design (see [1, 2, 6,
15, 16]). When s=1 and r=1, a characterization of Lp -convergence of
cascade algorithms associated with homogeneous refinement equation (1.2)
was given in [2, 6]. The similar characterizations for multivariate and
vector homogeneous refinement equations were also respectively given in
[5, 11]. In the univariate and scalar case (s=1 and r=1), Strang and
Zhou [14] gave a complete characterization for Lp -convergence of cascade
algorithm associated with inhomogeneous refinement equations (1.1).
These results were further extended to the multivariate case for p=2 [10].
In this paper, we are interested in the strong convergence in the Sobolev
space W k

2(Rs) of the cascade algorithm associated with inhomogeneous
refinement equations (1.1). For the case r=1, characterizations of weak
and strong convergence in the Sobolev space W k

2(Rs) of cascade algorithms
associated with homogeneous refinement equation (1.2) were investigated
in some papers such as [4, 8]. For the vector case (r>1), Micchelli and
Sauer [12] investigated convergence in the Sobolev space W k

p(Rs) of
cascade algorithms associated with homogeneous refinement equations.
Our object here is to give a characterization of strong convergence of the
cascade algorithm given in (1.3) in the Sobolev space W k

2(Rs) in terms of
the refinement mask a, the inhomogeneous term g, and the initial vector of
functions .0 .

154 SONG LI



The main result of this paper provides a sufficient condition for the smooth-
ness of solutions of inhomogeneous refinement equations. Compared with
the well-developed smoothness analysis of homogeneously refinable func-
tions (e.g., [16]), the situation for inhomogeneously refinable functions is
totally different and their smoothness analysis is not as clear so far.

2. SOME NOTATIONS AND MAIN RESULT

Associated with the refinement equation (1.2), we need the cascade operator
Qa defined by

Qa f (x)= :
: # Z s

a(:) f (2x&:), f =( f1 , ..., fr)
T # (L2(Rs))r. (2.1)

The Fourier transform of an integrable function f on Rs is defined to be

f� (!)=|
R s

f (x) e&ix } ! dx, ! # Rs,

where x } ! denotes the inner product of two vectors x and ! in Rs.
Let l0(Zs) (resp. (l0(Z

s))r_r) denote the linear space of all finitely sup-
ported sequences (resp. of r_r matrices) on Zs. Furthermore, we denote by
(l�(Zs))r_r the linear space of all r_r matrixes of bounded sequences. The
norm on (l�(Zs))r_r is given by

&v&�=sup[ |eT
j v(:) el |: : # Zs, j, l=1, ..., r], v # (l�(Zs))r_r,

where eT
j denotes the transpose of ej and ej is the j th column of r_r

identity matrix.
We use Cr to denote the linear space of all r_1 complex vectors. The

norm of a vector !=(!1 , ..., !r)
T # Cr is defined by |!|=(�r

j=1 |!j |
2)1�2.

For a positive integer k # N, let W k
2(Rs) denote the Sobolev space that

consists of all vectors of functions f such that (1+|!| )k f� (!) # (L2(Rs))r,
equipped with the norm defined by

& f &W 2
k(R s)=

1
(2?)s�2 \|R s

(1+|!|2k) | f� (!)|2 d!+
1�2

, (2.2)

where f� (!)=( f� 1(!), ..., f� r(!))T for f =( f1 , ..., fr)
T.

Given a finitely supported sequence c # (l0(Zs))r_r, we use c~ (z) to denote
its symbol

c~ (z)= :
: # Z s

c(:) z:,
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where z:=z:1
1

} } } z:s
s for z=(z1 , ..., zs) # (C"[0])s, and :=(:1 , ..., :s) # Zs.

For c, d # (l0(Zs))r_r, the discrete convolution of c and d, denoted c V d, is
given by

c V d(:)= :
; # Z s

c(:&;) d(;), : # Zs.

It is easily seen that

c V d
t

(z)=c~ (z) d� (z), z=(z1 , ..., zs) # (C"[0])s. (2.3)

Let a be an element in (l0(Zs))r_r. We define the transition operator Fa

to be the linear mapping from (l0(Zs))r_r to (l0(Zs))r_r given by its symbol

Faw
t

(e&i!)=
1
4s :

* # E

a~ (e&i(1�2)(!+2?*)) w~ (e&i(1�2)(!+2?*))

_a~ (e&i(1�2)(!+2?*))*, (2.4)

where w # (l0(Zs))r_r, a~ (e&i(1�2)(!+2?*))* denotes the complex conjugate
transpose of a~ (e&i(1�2)(!+2?*)), E=[(=1 , ..., =s); =1 , ..., =s # [0, 1]s], and !=
(!1 , ..., !s) # Rs.

Following the ideas of [5, 11], it is easy to show that the minimal
invariant subspace W of Fa generated by each w # (l0(Z

s))r_r is finite
dimensional. We use \(Fa |W) to denote the spectral radius of Fa |W .

With above notations, our main result is stated as follows.

Theorem. Let k # N, g, and .0 be vectors of compactly supported func-
tions in W k

2(Rs). Then the cascade algorithm associated with a, g and .0 is
convergent in the Sobolev space W k

2(Rs) if and only if

lim
n � �

22nk &F n
a w1&�=0,

and

lim
n � �

&F n
aw2&�=0,

where w1 , w2 # (l0(Z
s))r_r are given respectively by

w~ 1(e&i!)= :
: # Z s

|!+2?:| 2k ĝ0(!+2?:) ĝ0(!+2?:)*
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and

w~ 2(e&i!)= :
: # Z s

ĝ0(!+2?:) ĝ0(!+2?:)*,

and g0 :=g+Qa.0&.0 , or, equivalently

\(Fa |W1
)<2&2k, (2.5)

and

\(Fa | W2
)<1, (2.6)

where W1 and W2 are the minimal invariate subspaces of Fa generated
respectively by w1 and w2 .

3. PROOF OF THEOREM

Form (1.3) and (2.1) we have

.n= g+Qa g+ } } } +Qn&1
a g+Qn

a.0 .

Then

.n+1&.n=Qn
a g+Qn+1

a .0&Qn
a.0=Qn

a g0 .

Hence

&.n+1&.n &2
W2

k (R s)=
1

(2?)s |
R s

(1+|!|2k) |Qn
a g0@ (!)|2 d!. (3.1)

Let an (n=1, 2, ...) be the sequence defined by a1=a and

an(:)= :
; # Z s

an&1(;) a(:&2;), : # Zs, n=2, 3, ... . (3.2)

It can be easily seen by induction that

Qn
a g0= :

: # Z s

an(:) g0(2n } &:).

Taking the Fourier transform on both sides, we obtain

Qn
a g0@ (!)=

1
2ns a~ n(e&i2&n!) ĝ0(2&n!), ! # Rs.
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It follows that

|
R s

(1+|!|2k) |Qn
a g0@ (!)| 2 d!=

1
4ns |

R s
(1+|!| 2k) |a~ n(e&i2&n!) ĝ0(2&n!)|2 d!

=
1

2ns |
R s

(1+|2n!|2k) |a~ n(e&i!) ĝ0(!)|2 d!.

By periodization, this equals

1
2ns |

[0, 2?) s
:

: # Z s

(1+|2n(!+2?:)| 2k) |a~ n(e&i!) ĝ0(!+2?:)|2 d!.

By definition of w1 and w2 and [7] we obtain

2ns |
R s

(1+|!|2k) |Qn
a g0@ (!)|2 d!= :

r

j=1

eT
j _|[0, 2?) s

a~ n(e&i!)(w~ 2(e&i!)

+22nkw~ 1(e&i!)) a~ n(e&i!)* d!& ej . (3.3)

By the iteration relation (3.2) we have

a~ n(e&i!)=a~ n&1(e&i2!) a~ (e&i!).

Hence

|
[0, 2?)

a~ n(e&i!) w~ 1(e&i!) a~ n(e&i!)* d!

=|
[0, 2?) s

a~ n&1(e&i2!) a~ (e&i!) w~ 1(e&i!) a~ (e&i!)* a~ n&1(e&i2!)* d!

=
1
2s |

[0, 4?) s
a~ n&1(e&i!) a~ (e&i(1�2 !)) w~ 1(e&i(1�2) !)

_a~ (e&i(1�2) !)* a~ n&1(e&i!)* d!.

We observe that [0, 4?)s is the disjoint union of 2?*+[0, 2?)s, * # E. Then
the above expression equals

2s |
[0, 2?) s

a~ n&1(e&i!) Faw1

t
(e&i!) a~ n&1(e&i!)* d!.
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By induction on n, we obtain

1
(2?)s |

[0, 2?) s
a~ n(e&i!) w~ 1(e&i!) a~ n(e&i!)* d!=

2ns

(2?)s |
[0, 2?) s

F n
aw1

t
(e&i!) d!

=2nsF n
a w1(0). (3.4)

Similarly, we have

1
(2?)s |

[0, 2?) s
a~ n(e&i!) w~ 2(e&i!) a~ n(e&i!)* d!

=
2ns

(2?)s |
[0, 2?) s

F n
aw2

t
(e&i!) d!

=2nsF n
aw2(0). (3.5)

From (3.1), (3.3), (3.4), and (3.5), we know that

&.n+1&.n &2
W 2

k (R s)= :
r

j=1

eT
j (F n

aw2(0)+22nkF n
aw1(0)) ej . (3.6)

If \(Fa | W1
)<2&2k and \(Fa | W2

)<1, then we can find ', 0<'<1, such
that &F n

aw1&1�n
� <'2&2k and &F n

aw2&1�n
� <' are valid for sufficiently large n.

Consequently, there exists a positive constant C independent of n, such that
for all n # N

&F n
aw1&��C(2&2k')n,

and

&F n
aw2&��C'n.

Therefore, we have

&.n+1&.n&2
W 2

k (R s)�2rC'n.

Since the supports of .n are uniformly bounded, this shows that the
sequences [.n]n # N converge to a vector . of functions in W k

2(Rs). The
sufficiency part of theorem is proved.

Next, we establish the necessity part of theorem. From the above discus-
sion, it is easy to obtain

F n
aw1(:)=

2&ns

(2?)s |
[0, 2) s

a~ n(e&i!) w~ 1(e&i!) a~ n(e&i!)* ei: } 2 n! d!. (3.7)
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Let l, { # [1, ..., r]. It follows that

eT
l F n

aw1(:) e{ =
2&ns

(2?)s |
[0, 2?) s

eT
l a~ n(e&i!) w~ 1(e&i!) a~ n(e&i!)* e{ei: } 2n! d!

=
2&ns

(2?)s |
[0, 2?) s

:
: # Z s

|!+2?:|2k [eT
l a~ n(e&i!) ĝ0(!+2?:)]

_[eT
{ a~ n(e&i!) ĝ0(!+2?:)]* ei: } 2 n! d!.

Hence

|eT
l F n

aw1(:) e{ |�
2&ns

(2?)s |
[0, 2?) s

:
: # Z s

|!+2?:|2k |eT
l a~ n(e&i!) ĝ0(!+2?:)|

_|eT
{ a~ n(e&i!) ĝ0(!+2?:)| d!

�
2&ns

(2?)s :
r

j=1

eT
j _|[0, 2?) s

:
: # Z s

|!+2?:|2k a~ n(e&i!) ĝ0(!+2?:)

_ĝ0(!+2?:)* a~ n(e&i!)* d!& ej

=
2&ns

(2?)s :
r

j=1

eT
j _|[0, 2?) s

a~ n(e&i!) w~ 1(e&i!) a~ n(e&i!)* d!& e j

= :
r

j=1

eT
j F n

a w1(0) ej . (3.8)

Similarly, we obtain

|eT
l F n

a w2(:) e{ |� :
r

j=1

eT
j F n

aw2(0) ej . (3.9)

If one of (2.5) and (2.6) does not hold, then we have

inf
n�1

&F n
a |W1

&1�n
� = lim

n � �
&F n

a |W1
&1�n

� �2&2k,

or

inf
n�1

&F n
a |W2

&1�n
� = lim

n � �
&F n

a | W2
&1�n

� �1.

It follows that

&F n
a |W2

&��1, n # N,
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or

22nk &F n
a | W1

&��1, n # N.

From the proof of Lemma 2.4 in [5], we see that there exists a positive
constant M independent of n such that

&F n
aw2&��M, n # N,

or

22nk &F n
aw1&��M, n # N.

This in connection with (3.6), (3.8), and (3.9) gives

&.n+1&.n &W 2
k (R s)�M, n # N.

This contradicts the fact that

lim
n � �

&.n+1&.n&W 2
k (R s)=0.

The necessity part of the theorem is also proved.

4. EXAMPLE

In this section we give an example considered in [10, 14] to illustrate
our theory.

Example. Consider the inhomogeneous refinement equation

.(x)=t.(2x)+t.(2x&1)+ g(x), x # R, (4.1)

where t is a nonzero complex number and g is a function in W k
2(Rs)

supported in [0, 2]. Let .0 be a function in W k
2(Rs) supported in [0, 2].

The corresponding cascade algorithm is given by

.n+1(x)=t.n(2x)+t.n(2x&1)+ g(x), n=1, 2, ... .

We have a(0)=t, a(1)=t and a(:)=0 for : � [0, 1]. Let b be the sequences
given by b=(a V a*)�2, where a*(:)=a(&:), : # Z. Then b(&1)=|t|2�2,
b(0)=|t|2, b(1)=|t| 2�2, and b(:)=0 for : � [&1, 0, 1]. Let g0(x)=
g(x)+t.0(2x)+t.0(2x&1)&.0(x). Combining Example 3.2 in [10] and
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Section 5 in [14] with our theorem, we know that if |t|<2&k, the cascade
algorithm associated with a, g, and any .0 is convergent in W k

2(Rs); if
2&k�|t|<2&k+(1�2), the cascade algorithm associated with a, g, and .0 is
convergent in W k

2(Rs) if and only if

|
R

| g (k)
0 (x)|2 dx+|

R

g (k)
0 (x)(g (k)

0 (x+1)+g (k)
0 (x&1)) dx=0;

if 2&k+(1�2)�|t|<1, the cascade algorithm associated with a, g, and .0 is
convergent in W k

2(Rs) if and only if g (k)
0 (x)=0; if 1�|t|<21�2, the cascade

algorithm associated with a, g, and .0 is convergent in W k
2(Rs) if and only

if g (k)
0 (x)=0 and

|
R

| g0(x)|2 dx+|
R

g0(x)(g0(x+1)+g0(x&1)) dx=0;

and if |t|�21�2, the cascade algorithm associated with a, g, and .0 is
convergent in W k

2(Rs) if and only if .0 is a solution of Eq. (4.1).
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